Наибольшее и наименьшее значение функции. Нахождение наибольшего и наименьшего значения функции на отрезке Нахождение наибольшего значения функции

Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции .

Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция непрерывна на отрезке если:

1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева .

Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:

Функция непрерывна в точке справа , если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева , если определена в данной точке и её левосторонний предел равен значению в этой точке:

Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём . В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)

Согласно второй теореме Вейерштрасса , непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .

Число также называют максимальным значением функции на отрезке и обозначают через , а число – минимальным значением функции на отрезке с пометкой .

В нашем случае:

Примечание : в теории распространены записи .

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно! Как уже заострялось внимание в статье об экстремумах функции , наибольшее значение функции и наименьшее значение функции НЕ ТО ЖЕ САМОЕ , что максимум функции и минимум функции . Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!

Более того, решение чисто аналитическое, следовательно, чертежа делать не надо !

Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

1) Находим значения функции в критических точках , которые принадлежат данному отрезку .

Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует , что там минимальное или максимальное значение. Демонстрационная функция достигает максимума и волей судьбы это же число является наибольшим значением функции на отрезке . Но, понятно, такое совпадение имеет место далеко не всегда.

Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.

2) Вычисляем значения функции на концах отрезка.

3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

Садимся на берег синего моря и бьём пятками по мелководью:

Пример 1

Найти наибольшее и наименьшее значения функции на отрезке

Решение :
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Вычислим значение функции во второй критической точке:

2) Вычислим значения функции на концах отрезка:

3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :

Вот теперь всё понятно.

Ответ :

Дробно-рациональный экземпляр для самостоятельного решения:

Пример 6

Найти максимальное и минимальное значения функции на отрезке

Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции
  • область значений функции
  • нули функции
  • промежутки возрастания и убывания
  • точки максимума и минимума
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса - это координата точки по горизонтали.
Ордината - координата по вертикали.
Ось абсцисс - горизонтальная ось, чаще всего называемая ось .
Ось ординат - вертикальная ось, или ось .

Аргумент - независимая переменная, от которой зависят значения функции. Чаще всего обозначается .
Другими словами, мы сами выбираем , подставляем в формулу функции и получаем .

Область определения функции - множество тех (и только тех) значений аргумента , при которых функция существует.
Обозначается: или .

На нашем рисунке область определения функции - это отрезок . Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции - это множество значений, которые принимает переменная . На нашем рисунке это отрезок - от самого нижнего до самого верхнего значения .

Нули функции - точки, где значение функции равно нулю, то есть . На нашем рисунке это точки и .

Значения функции положительны там, где . На нашем рисунке это промежутки и .
Значения функции отрицательны там, где . У нас это промежуток (или интервал) от до .

Важнейшие понятия - возрастание и убывание функции на некотором множестве . В качестве множества можно взять отрезок , интервал , объединение промежутков или всю числовую прямую.

Функция возрастает

Иными словами, чем больше , тем больше , то есть график идет вправо и вверх.

Функция убывает на множестве , если для любых и , принадлежащих множеству , из неравенства следует неравенство .

Для убывающей функции большему значению соответствует меньшее значение . График идет вправо и вниз.

На нашем рисунке функция возрастает на промежутке и убывает на промежутках и .

Определим, что такое точки максимума и минимума функции .

Точка максимума - это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума - такая точка, значение функции в которой больше , чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке - точка максимума.

Точка минимума - внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума - такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке - точка минимума.

Точка - граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции . В нашем случае это и .

А что делать, если нужно найти, например, минимум функции на отрезке ? В данном случае ответ: . Потому что минимум функции - это ее значение в точке минимума.

Аналогично, максимум нашей функции равен . Он достигается в точке .

Можно сказать, что экстремумы функции равны и .

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке равно и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно . Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

\(\blacktriangleright\) Для того, чтобы найти наибольшее/наименьшее значение функции на отрезке \(\) , необходимо схематично изобразить график функции на этом отрезке.
В задачах из данной подтемы это можно сделать с помощью производной: найти промежутки возрастания (\(f">0\) ) и убывания (\(f"<0\) ) функции, критические точки (где \(f"=0\) или \(f"\) не существует).

\(\blacktriangleright\) Не стоит забывать, что наибольшее/наименьшее значение функция может принимать не только во внутренних точках отрезка \(\) , а также на его концах.

\(\blacktriangleright\) Наибольшее/наименьшее значение функции - это значение координаты \(y=f(x)\) .

\(\blacktriangleright\) Производная сложной функции \(f(t(x))\) ищется по правилу: \[{\Large{f"(x)=f"(t)\cdot t"(x)}}\]
\[\begin{array}{|r|c|c|} \hline & \text{Функция } f(x) & \text{Производная } f"(x)\\ \hline \textbf{1} & c & 0\\&&\\ \textbf{2} & x^a & a\cdot x^{a-1}\\&&\\ \textbf{3} & \ln x & \dfrac1x\\&&\\ \textbf{4} & \log_ax & \dfrac1{x\cdot \ln a}\\&&\\ \textbf{5} & e^x & e^x\\&&\\ \textbf{6} & a^x & a^x\cdot \ln a\\&&\\ \textbf{7} & \sin x & \cos x\\&&\\ \textbf{8} & \cos x & -\sin x\\ \hline \end{array} \quad \quad \quad \quad \begin{array}{|r|c|c|} \hline & \text{Функция } f(x) & \text{Производная } f"(x)\\ \hline \textbf{9} & \mathrm{tg}\, x & \dfrac1{\cos^2 x}\\&&\\ \textbf{10} & \mathrm{ctg}\, x & -\,\dfrac1{\sin^2 x}\\&&\\ \textbf{11} & \arcsin x & \dfrac1{\sqrt{1-x^2}}\\&&\\ \textbf{12} & \arccos x & -\,\dfrac1{\sqrt{1-x^2}}\\&&\\ \textbf{13} & \mathrm{arctg}\, x & \dfrac1{1+x^2}\\&&\\ \textbf{14} & \mathrm{arcctg}\, x & -\,\dfrac1{1+x^2}\\ \hline \end{array}\]

Задание 1 #2357

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции \(y = e^{x^2 - 4}\) на отрезке \([-10; -2]\) .

ОДЗ: \(x\) – произвольный.

1) \

\ Таким образом, \(y" = 0\) при \(x = 0\) .

3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \([-10; -2]\) :


4) Эскиз графика на отрезке \([-10; -2]\) :


Таким образом, наименьшего на \([-10; -2]\) значения функция достигает в \(x = -2\) .

\ Итого: \(1\) – наименьшее значение функции \(y\) на \([-10; -2]\) .

Ответ: 1

Задание 2 #2355

Уровень задания: Равен ЕГЭ

\(y = \sqrt{2}\cdot\sqrt{x^2 + 1}\) на отрезке \([-1; 1]\) .

ОДЗ: \(x\) – произвольный.

1) \

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[\sqrt{2}\cdot\dfrac{x}{\sqrt{x^2 + 1}} = 0\qquad\Leftrightarrow\qquad x = 0\,.\] Производная существует при любом \(x\) .

2) Найдём промежутки знакопостоянства \(y"\) :


3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \([-1; 1]\) :


4) Эскиз графика на отрезке \([-1; 1]\) :


Таким образом, наибольшего на \([-1; 1]\) значения функция достигает в \(x = -1\) или в \(x = 1\) . Сравним значения функции в этих точках.

\ Итого: \(2\) – наибольшее значение функции \(y\) на \([-1; 1]\) .

Ответ: 2

Задание 3 #2356

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции \(y = \cos 2x\) на отрезке \(\) .

ОДЗ: \(x\) – произвольный.

1) \

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[-2\cdot \sin 2x = 0\qquad\Leftrightarrow\qquad 2x = \pi n, n\in\mathbb{Z}\qquad\Leftrightarrow\qquad x = \dfrac{\pi n}{2}, n\in\mathbb{Z}\,.\] Производная существует при любом \(x\) .

2) Найдём промежутки знакопостоянства \(y"\) :


(здесь бесконечное число промежутков, в которых чередуются знаки производной).

3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \(\) :


4) Эскиз графика на отрезке \(\) :


Таким образом, наименьшего на \(\) значения функция достигает в \(x = \dfrac{\pi}{2}\) .

\ Итого: \(-1\) – наименьшее значение функции \(y\) на \(\) .

Ответ: -1

Задание 4 #915

Уровень задания: Равен ЕГЭ

Найдите наибольшее значение функции

\(y = -\log_{17}(2x^2 - 2\sqrt{2}x + 2)\) .

ОДЗ: \(2x^2 - 2\sqrt{2}x + 2 > 0\) . Решим на ОДЗ:

1) Обозначим \(2x^2-2\sqrt{2}x+2=t(x)\) , тогда \(y(t)=-\log_{17}t\) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[-\dfrac{1}{\ln 17}\cdot\dfrac{4x-2\sqrt{2}}{2x^2-2\sqrt{2}x+2} = 0\qquad\Leftrightarrow\qquad 4x-2\sqrt{2} = 0\] – на ОДЗ, откуда находим корень \(x = \dfrac{\sqrt{2}}{2}\) . Производная функции \(y\) не существует при \(2x^2-2\sqrt{2}x+2 = 0\) , но у данного уравнения отрицательный дискриминант, следовательно, у него нет решений. Для того, чтобы найти наибольшее/наименьшее значение функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства \(y"\) :

3) Эскиз графика:

Таким образом, наибольшее значение функция достигает в \(x = \dfrac{\sqrt{2}}{2}\) :

\(y\left(\dfrac{\sqrt{2}}{2}\right) = -\log_{17}1 = 0\) ,

Итого: \(0\) – наибольшее значение функции \(y\) .

Ответ: 0

Задание 5 #2344

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции

\(y = \log_{3}(x^2 + 8x + 19)\) .

ОДЗ: \(x^2 + 8x + 19 > 0\) . Решим на ОДЗ:

1) Обозначим \(x^2 + 8x + 19=t(x)\) , тогда \(y(t)=\log_{3}t\) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[\dfrac{1}{\ln 3}\cdot\dfrac{2x+8}{x^2 + 8x + 19} = 0\qquad\Leftrightarrow\qquad 2x+8 = 0\] – на ОДЗ, откуда находим корень \(x = -4\) . Производная функции \(y\) не существует при \(x^2 + 8x + 19 = 0\) , но у данного уравнения отрицательный дискриминант, следовательно, у него нет решений. Для того, чтобы найти наибольшее/наименьшее значение функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства \(y"\) :

3) Эскиз графика:

Таким образом, \(x = -4\) – точка минимума функции \(y\) и наименьшее значение достигается в ней:

\(y(-4) = \log_{3}3 = 1\) .

Итого: \(1\) – наименьшее значение функции \(y\) .

Ответ: 1

Задание 6 #917

Уровень задания: Сложнее ЕГЭ

Найдите наибольшее значение функции

\(y = -e^{(x^2 - 12x + 36 + 2\ln 2)}\) .

Вариант 1. у

1. График функции у= f (x ) изображен на рисунке.

Укажите наибольшее значение этой функции 1

на отрезке [ a ; b ]. а 0 1 b х

1) 2,5; 2) 3; 3) 4; 4) 2.

https://pandia.ru/text/78/524/images/image003_127.gif" width="242" height="133 src="> 1) -4; 2) -2; 3) 4; 4) 2.

4. Функции у= f (x ) задана на отрезке [ a ; b ]. у

На рисунке изображен график ее производной

у= f ´(x ). Исследуйте на экстремумы 1 b

функцию у= f (x ). В ответе укажите количество a 0 1 х

точек минимума.

1) 6; 2) 7; 3) 4;

5. Найдите наибольшее значение функции у= -2х2+8х -7.

1) -2; 2) 7; 3) 1;

6. Найдите наименьшее значение функции на отрезке .

1) https://pandia.ru/text/78/524/images/image005_87.gif" width="17" height="48 src=">.

7. Найдите наименьшее значение функции у= |2х+3 | - .

1) - https://pandia.ru/text/78/524/images/image006_79.gif" width="17" height="47">; 4) - .

https://pandia.ru/text/78/524/images/image009_67.gif" width="144" height="33 src="> имеет минимум в точке хо=1,5 ?

1) 5; 2) -6; 3) 4; 4) 6. у

9. Укажите наибольшее значение функции у= f (x ) ,

1 х

0 1

1) 2,5; 2) 3; 3) -3;

у= lg (100 – x 2 ).

1) 10 ; 2) 100 ; 3) 2 ; 4) 1 .

11. Найдите наименьшее значение функции у=2 sin -1.

1) -1 ; 2) -3 ; 3) -2 ; 4) - .

Тест 14. Экстремумы. Наибольшее (наименьшее) значение функции.

https://pandia.ru/text/78/524/images/image013_44.gif" width="130" height="115 src=">1. График функции у= f (x ) изображен на рисунке.

Укажите наименьшее значение этой функции 1

на отрезке [ a ; b ]. а b

0 1 x

1) 0; 2) - 4 ,5; 3) -2; 4) - 3.

2. у На рисунке изображен график функции у= f (x ).

Сколько точек максимума имеет функция?

1

0 1 х 1) 5; 2) 6; 3) 4; 4) 1.

3. В какой точке функция у= 2х2+24х -25 принимает наименьшее значение?

https://pandia.ru/text/78/524/images/image018_37.gif" width="76" height="48"> на отрезке [-3;-1].

1) - https://pandia.ru/text/78/524/images/image020_37.gif" width="17" height="47 src=">; 2); 4) - 5.

https://pandia.ru/text/78/524/images/image022_35.gif" width="135" height="33 src="> имеет минимум в точке хо= -2 ?

; 2) -6;; 4) 6. у

9. Укажите наименьшее значение функции у= f (x ) ,

график которой изображен на рисунке. 1 х

0 1

1) -1,5; 2) -1; 3) -3;

10. Найдите наибольшее значение функции у= log 11 (121 – x 2 ).

1) 11;; 3) 1;

11. Найдите наибольшее значение функции у=2 cos +3.

1) 5 ; 2) 3 ; 3) 2 ; 4) .

Ответы:

Пусть функция у = f (х) непрерывна на отрезке [a, b ]. Как известно, такая функция на этом отрезке достигает наибольшего и наименьшего значений. Эти значения функция может принять либо во внутренней точке отрезка [a, b ], либо на границе отрезка.

Для нахождения наибольшего и наименьшего значений функции на отрезке [a, b ] необходимо:

1)найти критические точки функции в интервале (a, b );

2)вычислить значения функции в найденных критических точках;

3) вычислить значения функции на концах отрезка, то есть при x = а и х = b ;

4)из всех вычисленных значений функции выбрать наибольшее и наименьшее.

Пример. Найти наибольшее и наименьшее значения функции

на отрезке .

Находим критические точки:

Эти точки лежат внутри отрезка ; y (1) = ‒ 3; y (2) = ‒ 4; y (0) = ‒ 8; y (3) = 1;

в точке x = 3 и в точкеx = 0.

Исследование функции на выпуклость и точку перегиба.

Функция y = f (x ) называется выпуклойвверх на промежутке (a , b ) , если ее график лежит под касательной, проведенной в любой точке этого промежутка, и называется выпуклой вниз (вогнутой) , если ее график лежит над касательной.

Точка, при переходе через которую выпуклость сменяется вогнутостью или наоборот, называется точкой перегиба .

Алгоритм исследования на выпуклость и точку перегиба:

1. Найдеми критические точки второго рода, то есть точки в которых вторая производная равна нулю или не существует.

2. Нанести критические точки на числовую прямую, разбивая ее на промежутки. Найти знак второй производной на каждом промежутке; если , то функция выпуклая вверх, если, то функция выпуклая вниз.

3. Если при переходе через критическую точку второго рода поменяет знак и в этой точке вторая производная равна нулю, то эта точка ‒ абсцисса точки перегиба. Найти ее ординату.

Асимптоты графика функции. Исследование функции на асимптоты.

Определение. Асимптотой графика функции называется прямая , обладающая тем свойством, что расстояние от любой точки графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Существуют три вида асимптот: вертикальные, горизонтальные и наклонные.

Определение. Прямая называетсявертикальной асимптотой графика функции у = f (х) , если хотя бы один из односторонних пределов функции в этой точке равен бесконечности, то есть

где ‒ точка разрыва функции, то естьне принадлежит области определения.

Пример.

D (y ) = (‒ ∞; 2) (2; + ∞)

x = 2 ‒ точка разрыва.

Определение. Прямая у = A называется горизонтальной асимптотой графика функции у = f(х) при , если

Пример.

x

y

Определение. Прямая у = k х + b (k ≠ 0) называется наклонной асимптотой графика функции у = f (х) при , где

Общая схема исследования функций и построения графиков.

Алгоритм исследования функции у = f (х) :

1. Найти область определения функцииD (y ).

2. Найти (если это можно) точки пересечения графика с осями координат (при x = 0 и при y = 0).

3. Исследовать на четность и нечетность функции(y (x ) = y (x ) четность; y (x ) = y (x ) нечетность).

4. Найти асимптоты графика функции.

5. Найти интервалы монотонности функции.

6. Найти экстремумы функции.

7. Найти интервалы выпуклости (вогнутости) и точки перегиба графика функции.

8. На основании проведенных исследований построить график функции.

Пример. Исследовать функцию и построить ее график.

1) D (y ) =

x = 4 ‒ точка разрыва.

2) При x = 0,

(0; ‒ 5) ‒ точка пересечения с oy .

При y = 0,

3) y (x )= функция общего вида (ни четная, ни нечетная).

4) Исследуем на асимптоты.

а) вертикальные

б) горизонтальные

в) найдем наклонные асимптоты где

‒уравнение наклонной асимптоты

5) В данном уравнении не требуется найти интервалы монотонности функции.

6)

Эти критические точки разбивают всю область определения функции на интервале (˗∞; ˗2), (˗2; 4), (4; 10)и (10; +∞). Полученные результаты удобно представить в виде следующей таблицы:

нет экстр.

Из таблицы видно, что точках = ‒2‒точка максимума, в точкех = 4‒нет экстремума, х = 10 ‒точка минимума.

Подставим значение (‒ 3) в уравнение:

9 + 24 ‒ 20 > 0

25 ‒ 40 ‒ 20 < 0

121 ‒ 88 ‒ 20 > 0

Максимум этой функции равен

(‒ 2; ‒ 4) ‒ экстремум максимальный.

Минимум этой функции равен

(10; 20) ‒ экстремум минимальный.

7) исследуем на выпуклость и точку перегиба графика функции