Маятниковые часы. Начало научных исследований Христиан гюйгенс получил патент

Часы раздора

Наш следующий герой - Христиан Гюйгенс - был непосредственным преемником Галилея в науке. По словам Лагранжа, Гюйгенсу «было суждено усовершенствовать и развить важнейшие открытия Галилея».

Христиан Гюйгенс фон Цюйлихен (1629–1695), сын голландского дворянина Константина Гюйгенса, родился 14 апреля 1629 года. «Таланты, дворянство и богатство были, по-видимому, наследственными в семействе Христиана Гюйгенса», - писал один из его биографов.

Его дед был литератор и сановник, отец - тайный советник принцев Оранских, математик, поэт. Верная служба своим государям не закрепощала их талантов, и казалось, Христиану предопределена та же, для многих завидная судьба. Он учился арифметике и латыни, музыке и стихосложению. Генрих Бруно, его учитель, не мог нарадоваться своим четырнадцатилетним воспитанником: «Я признаюсь, что Христиана надо назвать чудом среди мальчиков. Он развертывает свои способности в области механики и конструкций, делает машины. Искусный мастер, он самостоятельно шлифует оптические стекла, совершенствует трубу, с помощью которой позднее совершит свои астрономические открытия» .

Окончив университет, Гюйгенс становится украшением свиты графа Нассауского. Он сознавал свои способности и стремился использовать их в полной мере. «Единственное развлечение, которое Гюйгенс позволял себе… - писал о нем один из современников, - состояло в том, что он в промежутках занимался физикой. То, что для обыкновенного человека было утомительным занятием, для Гюйгенса было развлечением». В 1663 году Гюйгенс был избран членом Лондонского королевского общества. В 1665 году, по приглашению Кольбера, он поселился в Париже и в следующем году стал членом только что организованной Парижской академии наук. Пятнадцать лет он проработал при дворе Людовика XIV, и это были пятнадцать лет блестящих математических и физических исследований. Одно из важнейших изобретений Гюйгенса - часы с маятником, появившиеся в 1656 году. На их циферблате была только одна стрелка - часовая. В этих часах гиря поворачивала колесо, и его вращение передавалось верхнему - храповидному колесу. Маятник проходил между зубьями вилки, и при каждом качании вилка заставляла поворачивать то вправо, то влево стержень с двумя пластинками. Эти пластинки были расположены так, что поочередно упирались то в один, то в другой зубец храповидного колеса.

Гюйгенс запатентовал свое изобретение 16 июля 1657 года и описал его в небольшом сочинении, опубликованном в 1658 году. Он писал о своих часах французскому королю Людовику XIV: «Мои автоматы, поставленные в ваших апартаментах, не только поражают вас всякий день правильным указанием времени, но они годны, как я надеялся с самого начала, для определения на море долготы места» . Задачей создания и совершенствования часов, прежде всего маятниковых, Христиан Гюйгенс занимался почти сорок лет: с 1656 по 1693 год. Немецкий физик А. Зоммерфельд назвал Гюйгенса «гениальнейшим часовым мастером всех времен» . Часы Гюйгенса реально работали и обеспечивали превосходную для его времени точность хода. Вскоре они получили широчайшее распространение по всему миру.

Вот изобрел Гюйгенс в 1657 году точные маятниковые часы, дал их теорию, опубликовал все это и получил патент. Казалось бы, радуйся. Но оказалось, что ранее в этой области работал Галилей. В письме от 1636 года голландскому адмиралу Галилей предлагал соединить маятник со счетчиком колебаний. Вдохновившись экспериментально установленным им почти полным равенством периодов колебаний тяжелых маятников при малых амплитудах, в 1641 году он разработал проект маятниковых часов с вполне работоспособным спусковым регулятором, содержащим ходовое колесо и спусковую вилку с палетами. Первые образцы таких часов были изготовлены уже после смерти Галилея его сыном Винченцо, а одна из их моделей дожила до наших дней и находится в Лондонском национальном музее науки.

Свято чтивший память учителя, Вивиани был глубоко уязвлен, когда спустя шестнадцать лет после смерти Галилея ему попалась в руки небольшая книжка, изданная в Голландии: «Трактат о часах». Ее автор Гюйгенс называл изобретателем маятниковых часов не Галилея, а себя. Вивиани попросил герцога Тосканского сообщить королевскому куратору астрономии во Франции, где тогда работал Гюйгенс, о том, что идея измерения времени с помощью маятника появилась у Галилея чуть ли не сто лет назад, и приложил общий чертеж таких часов, над которыми Галилей начал работать за год до смерти, в 1642 году, и которые, увы, не успел завершить и сын Галилея аж за десять лет. Роль посредника в этом щекотливом деле взял на себя принц Леопольд Медичи.

Письмо принца стало для Гюйгенса громом с ясного неба . Его обвиняли в плагиате! Как доказать, что он даже не подозревал о намерении глубоко уважаемого им Галилея построить подобные часы? Но Гюйгенс, к счастью, был знаменит. Математик, астроном, оптик, в свои 29 лет он уже признан ученым миром Голландии, Франции, Англии. Его допустили к секретным архивам Нидерландов, дали прочитать переписку с Галилеем. В ней говорится не о часах, а об открытом итальянским ученым способе определения долготы по спутникам Юпитера, хорошо видным в галилеевский телескоп. Второе, не менее важное обстоятельство: механизм Галилея совсем не был похож на механизм, изобретенный Гюйгенсом. Дело в том, что изобретение точного, надежного и простого счетчика колебаний маятника потребовало сложного геометрического анализа, приведшего к вычислению необходимой кривой - циклоиды. Это мог сделать и сделал только Гюйгенс. Гюйгенс владел методами математических исследований, создал первую теорию маятника и маятниковых часов и методы их расчета, а их изложение в его книге «Маятниковые часы» («Horologium oscillatorium») стало на долгие годы основой осознанного подхода к их проектированию и совершенствованию.

Все это молодой голландец изложил в вежливом ответе принцу Медичи. В конце приписал, что считает для себя большой честью решить задачу создания маятниковых часов, с которой не справился великий Галилей, но безоговорочно признает первенство Галилея в открытии свойств маятника . Гюйгенс, безусловно, не знал о первых маятниковых часах Галилея, во всяком случае, до 1660 года, когда его впервые ознакомили с чертежами этих часов. Поэтому его справедливо считают автором независимого изобретения.

Гюйгенсу принадлежит и приоритет первого применения в часах колебательной системы баланс - спираль (в 1675 году), не оцененный в то время по достоинству, ибо точность таких часов была значительно ниже, чем маятниковых. Этот механизм основан на колебаниях подпружиненного тела. В современных часах, будь то карманные или будильник, можно увидеть колесико - элемент предложенного Гюйгенсом механизма. Что крайне важно - тряска и качка на такие часы практически не влияют.

В 1674 году парижский часовщик Тюре сделал по указаниям Гюйгенса первые балансовые часы. Увы, ход таких часов сильно зависел от окружающей температуры: достаточно было температуре воздуха измениться на один градус, как часы начинали «ходить» в двадцать раз резвее маятниковых.

В Париже Гюйгенсу «привилегию» на маятниковые часы не выдали, потому что заявил претензию некий аббат Отфей (1647–1724) из Орлеана. Значительно позже, в 1722 году, он опубликовал описание хода, весьма похожего на предложенный Гюйгенсом. Попытка получить патент в Англии вызвала резкий протест Роберта Гука: оказывается, он десять лет назад говорил на лекции, что спиральная пружина может сыграть в часах роль силы тяжести, действующей на маятник. Изобретение это было сделано им в 1656–1658 годах. По указаниям Гука часовой мастер Томпсон сделал для Карла II первые часы с регулирующей пружиной.

Что было делать? Гюйгенс, устав от бесконечных обвинений, от необходимости доказывать свою честность, бросил заниматься часами. «Я предоставил свободу всем часовщикам работать над этим изобретением», - сказал он одному из друзей.

Наверное, все участники спора были бы поражены, узнай они, что за 200 лет до Гюйгенса и Галилея маятниковые часы изобрел Леонардо да Винчи. Но бумаги Леонардо были обнаружены только спустя еще три столетия.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Что такое теория относительности автора Ландау Лев Давидович

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Глава пятая ЧАСЫ И ЛИНЕЙКИ КАПРИЗНИЧАЮТ Снова садимся в поезд Перед нами очень длинная железная дорога, по которой движется поезд Эйнштейна. На расстоянии 864 000 000 километров друг от друга находятся две станции. При скорости 240 000 километров в секунду поезду Эйнштейна

Из книги История лазера автора Бертолотти Марио

Часы систематически отстают Итак, в то время как на станции прошло 10 секунд, в поезде - всего лишь 6 секунд. Значит, если по станционному времени поезд пришел через час после своего отправления, то по часам пассажира пройдет всего 60 X (6 / 10) = 36 минут. Другими словами, часы

Из книги Вечное движение. История одной навязчивой идеи автора Орд-Хьюм Артур

Измерение времени ночью. Деканы. Звездные часы Важной проблемой, связанной с необходимостью определять время ночных служб в храмах, было измерение времени ночью. Из ритуальных календарей Позднего периода известно, что некоторые праздники в египетских храмах отмечались

Из книги автора

Часы Рамессидов. В середине II тыс. до н. э. появился новый метод определения ночного времени по моментам прохождений особых часовых звезд через меридиан и прилегающие к нему вертикалы. Его датировка, произведенная на основании данных о гелиакическом восходе Сотис, дает

Из книги автора

Водяные и солнечные часы Водяные часы. Самые древние египетские водяные часы (клепсидры) обнаружены в Карнаке и датируются эпохой Аменхотепа III (XIV в. до н. э.), но восходят к более раннему времени, так как зафиксированное на них отношение «самая короткая ночь - месяц

Из книги автора

ЭЛЕКТРОЛИТИЧЕСКИЕ ЧАСЫ* Если тонкий, легко вращающийся и хорошо сбалансированный диск или цилиндр поместить в соответствующий гальванический раствор посредине между анодом и катодом, то одна половина диска станет электрически положительной, а другая половина -

Из книги автора

Атомные часы Как мы уже говорили, в 1949 г. Н. Рамси изобрел резонансную методику с разнесенными осциллирующими полями, которая в 1955 г. была использована Дж. Захариасом, Дж. Пари, Луисом Эссеном и др. для создания атомных часов и стандартов частоты. За этот метод Рамси в 1989 г.

Из книги автора

Атомные часы Было установлено, что наиболее интересным применением мазеров на атомных пучках является создание атомных часов. Очень точные часы можно использовать, чтобы установить, являются ли астрономические «константы» действительно постоянными или они изменяются

Христиан Гюйгенс фон Цюйлихен — сын голландского дворянина Константина Гюйгенса, родился 14 апреля 1629 года. «Таланты, дворянство и богатство были, по-видимому, наследственными в семействе Христиана Гюйгенса», — писал один из его биографов. Его дед был литератор и сановник, отец — тайный советник принцев Оранских, математик, поэт.

Верная служба своим государям не закрепощала их талантов, и, казалось, Христиану предопределена та же, для многих завидная судьба. Он учился арифметике и латыни, музыке и стихосложению. Генрих Бруно, его учитель, не мог нарадоваться своим четырнадцатилетним воспитанником:

«Я признаюсь, что Христиана надо назвать чудом среди мальчиков... Он развертывает свои способности в области механики и конструкций, делает машины удивительные, но вряд ли нужные». Учитель ошибался: мальчик все время ищет пользу от своих занятий. Его конкретный, практический ум скоро найдет схемы как раз очень нужных людям машин.

Впрочем, он не сразу посвятил себя механике и математике. Отец решил сделать сына юристом и, когда Христиан достиг шестнадцатилетнего возраста, направил его изучать право в Лондонский университет.

Занимаясь в университете юридическими науками, Гюйгенс в то же время увлекается математикой, механикой, астрономией, практической оптикой. Искусный мастер, он самостоятельно шлифует оптические стекла, совершенствует трубу, с помощью которой позднее совершит свои астрономические открытия.

Христиан Гюйгенс был непосредственным преемником Галилея в науке. По словам Лагранжа, Гюйгенсу «было суждено усовершенствовать и развить важнейшие открытия Галилея». Существует рассказ о том, как в первый раз Гюйгенс соприкоснулся с идеями Галилея. Семнадцатилетний Гюйгенс собирался доказать, что брошенные горизонтально тела движущейся по параболам, но, обнаружив доказательство в книге Галилея, не захотел «писать «Илиаду» после Гомера».

Окончив университет, он становится украшением свиты графа Нассауского, который с дипломатическим поручением держит путь в Данию. Графа не интересует, что этот красивый юноша — автор любопытных математических работ, и он, разумеется, не знает, как мечтает Христиан попасть из Копенгагена в Стокгольм, чтобы увидеть Декарта. Так они не встретятся никогда: через несколько месяцев Декарт умрет.

В 22 года Гюйгенс публикует «Рассуждения о квадрате гиперболы, эллипса и круга». В 1655 году он строит телескоп и открывает один из спутников Сатурна — Титан и публикует «Новые открытия в величине круга». В 26 лет Христиан пишет записки по диоптрике. В 28 лет выходит его трактат «О расчетах при игре в кости», где за легкомысленным с виду названием скрыто одно из первых в истории исследований в области теории вероятностей.

Одним из важнейших открытий Гюйгенса было изобретение часов с маятником. Он запатентовал свое изобретение 16 июля 1657 года и описал его в небольшом сочинении, опубликованном в 1658 году. Он писал о своих часах французскому королю Людовику XIV: «Мои автоматы, поставленные в ваших апартаментах, не только поражают вас всякий день правильным указанием времени, но они годны, как я надеялся с самого
начала, для определения на море долготы места». Задачей создания и совершенствования часов, прежде всего маятниковых. Христиан Гюйгенс занимался почти сорок лет: с 1656 по 1693 год. А. Зоммерфельд назвал Гюйгенса «гениальнейшим часовым мастером всех времен».

В тридцать лет Гюйгенс раскрывает секрет кольца Сатурна. Кольца Сатурна были впервые замечены Галилеем в виде двух боковых придатков, «поддерживающих» Сатурн. Тогда кольца были видны, как тонкая линия, он их не заметил и больше о них не упоминал. Но труба Галилея не обладала необходимой разрешающей способностью и достаточным увеличением. Наблюдая небо в 92-кратный телескоп. Христиан обнаруживает, что за боковые звезды принималось кольцо Сатурна. Гюйгенс разгадал
загадку Сатурна и впервые описал его знаменитые кольца.

В то время Гюйгенс был очень красивым молодым человеком с большими голубыми глазами и аккуратно подстриженными усиками. Рыжеватые, круто завитые по тогдашней моде локоны парика опускались до плеч, ложась на белоснежные брабантские кружева дорогого воротника. Он был приветлив и спокоен. Никто не видел его особенно взволнованным или растерянным, торопящимся куда-то, или, наоборот, погруженным в медлительную задумчивость. Он не любил бывать в «свете» и редко там появлялся, хотя его происхождение открывало ему двери всех дворцов Европы. Впрочем, когда он появляется там, то вовсе не выглядел неловким или смущенным, как часто случалось с другими учеными.

Но напрасно очаровательная Нинон де Ланкло ищет его общества, он неизменно приветлив, не более, этот убежденный холостяк. Он может выпить с друзьями, но чуть-чуть. Чуть-чуть попроказить, чуть-чуть посмеяться. Всего понемногу, очень понемногу, чтобы осталось как можно больше времени на главное — работу. Работа — неизменная всепоглощающая страсть — сжигала его постоянно.

Гюйгенс отличался необыкновенной самоотдачей. Он сознавал свои способности и стремился использовать их в полной мере. «Единственное развлечение, которое Гюйгенс позволял себе в столь отвлеченных трудах, — писал о нем один из современников, — состояло в том, что он в промежутках занимался физикой. То, что для обыкновенного человека было утомительным занятием, для Гюйгенса было развлечением»

В 1663 году Гюйгенс был избран членом Лондонского Королевского общества. В 1665 году, по приглашению Кольбера, он поселился в Париже и в следующем году стал членом только что организованной Парижской Академии наук.

В 1673 году выходит в свет его сочинение «Маятниковые часы», где даны теоретические основы изобретения Гюйгенса В этом сочинении Гюйгенс устанавливает, что свойством изохронности обладает циклоида, и разбирает математические свойства циклоиды

Исследуя криволинейное движение тяжелой точки, Гюйгенс, продолжая развивать идеи, высказанные еще Галилеем, показывает, что тело при падении с некоторой высоты по различным путям приобретает конечную скорость, не зависящую от формы пути, а зависящую лишь от высоты падения, и может подняться на высоту, равную (в отсутствие сопротивления) начальной высоте. Это положение, выражающее по сути дела закон
сохранения энергии для движения в поле тяжести, Гюйгенс использует для теории физического маятника. Он находит выражение для приведенной длины маятника, устанавливает понятие центра качания и его свойства. Формулу математического маятника для циклоидального движения и малых колебаний кругового маятника он выражает следующим образом:

«Время одного малого колебания кругового маятника относится к времени падения по двойной длине маятника, как окружность круга относится к диаметру»

Существенно, что в конце своего сочинения ученый дает ряд предложений (без вывода) о центростремительной силе и устанавливает, что центростремительное ускорение пропорционально квадрату скорости и обратно пропорционально радиусу окружности Этот результат подготовил ньютоновскую теорию движения тел под действием центральных сил.

Из механических исследований Гюйгенса, кроме теории маятника и центростремительной силы, известна его теория удара упругих шаров, представленная им на конкурсную задачу, объявленную Лондонским Королевским обществом в 1668 году. Теория удара Гюйгенса опирается на закон сохранения живых сил, количество движения и принцип относительности Галилея. Она была опубликована лишь после его смерти в 1703 году

Гюйгенс довольно много путешествовал, но никогда не был праздным туристом. Во время первой поездки во Францию он занимался оптикой, а в Лондоне ~ объяснял секреты изготовления своих телескопов. Пятнадцать лет он проработал при дворе Людовика XIV, пятнадцать лет блестящих математических и физических исследований. И за пятнадцать лет — лишь две короткие поездки на родину, чтобы подлечиться.

Гюйгенс жил в Париже до 1681 года, когда после отмены Нантского эдикта он, как протестант, вернулся на родину. Будучи в Париже, он хорошо знал Рёмера и активно помогал ему в наблюдениях, приведших к определению скорости света. Гюйгенс первый сообщил о результатах Рёмера в своем трактате.

Дома, в Голландии, опять не зная усталости, Гюйгенс строит механический планетарий, гигантские семидесятиметровые телескопы, описывает миры других планет.

Появляется сочинение Гюйгенса на латинском языке о свете, исправленное автором и переизданное на французском языке в 1690 году «Трактат о свете» Гюйгенса вошел в историю науки как первое научное сочинение по волновой оптике В этом «Трактате» сформулирован принцип распространения волны, известный ныне под названием принципа Гюйгенса На основе этого принципа выведены законы отражения и преломления света, развита теория двойного лучепреломления в исландском шпате Поскольку скорость распространения света в кристалле в различных направлениях различна, то форма волновой поверхности будет не сферической, а эллипсоидальной.

Теория распространения и преломления света в одноосных кристаллах — замечательное достижение оптики Гюйгенса. Гюйгенс описал также исчезновение одного из двух лучей при прохождении их через второй кристалл при определенной ориентировке его относительно первого. Таким образом, Гюйгенс был первым физиком, установившим факт поляризации света.

Идеи Гюйгенса очень высоко ценил его продолжатель Френель. Он ставил их выше всех открытий в оптике Ньютона, утверждая, что открытие Гюйгенса, «быть может, труднее сделать, нежели все открытия Ньютона в области явлений света».

Цвета Гюйгенс в своем трактате не рассматривает, равно как и дифракцию света. Его трактат посвящен только обоснованию отражения и преломления (включая и двойное преломление) с волновой точки зрения. Вероятно, это обстоятельство было причиной того, что теория Гюйгенса, несмотря на поддержку ее в XVIII веке Ломоносовым и Эйлером, не получила признания до тех пор, пока Френель в начале XIX веке не воскресил волновую теорию на новой основе.

Умер Гюйгенс 8 июня 1695 года, когда в типографии печаталась «КосМотеорос» — последняя его книга.

К концу XVII в. наука в Европе окончательно порывает со схоластикой Аристотеля и для нее начинается новое время — время доверия к опыту. Важнейшая роль в этом повороте принадлежит Галилео Галилею (1564—1642). Но из всех его многочисленных исследований мы остановимся только на тех, где основную роль играли наблюдения самых обычных явлений, игнорируемых множеством людей до него. Как-то, когда 19-летний Галилей сидел в соборе в Пизе во время длинной проповеди, служка, зажигавший свечи, неловко толкнул светильник, свисавший на длинном канате, и тот начал раскачиваться. Галилей засек, скольким ударам его пульса соответствует одно полное колебание светильника, но через некоторое время, когда размах колебаний заметно уменьшился, он с удивлением отметил, что число ударов пульса осталось прежним. Отсюда следовала изохронность, т. е. независимость периода колебаний маятника от амплитуды!

Далее он замечает, что все светильники с одинаковой длиной подвеса, но даже разной массы, совершают колебания с одинаковой частотой, т. е. период их колебаний зависит только от длины подвеса и не зависит от массы и формы светильника. Таким образом у физиков появился прибор, позволявший легко измерять время (до того пользовались песочными или водяными часами, у всех они были разными, что не прзволяло сравнивать результаты разных наблюдений).

Поскольку Галилея назначили профессором математики в Пизе, он, согласно легенде, получил возможность проводить эксперименты на знаменитой падающей башне. Здесь он замечает, что, скажем, кирпич и связка таких же кирпичей падают вниз за одинаковое время. Вывод: скорость падения не зависит — или почти не зависит — от массы, некоторая разница возникает из-за сопротивления воздуха, но это было понято позже. (Скорее всего — это только легенда: Галилею проще было изучать законы падения пуская шары разной массы по наклонной плоскости — процесс растягивается во времени и уменьшается сопротивление воздуха. Бросать кирпичи с башни могло быть нужно только в качестве эффектной демонстрации, которые любили в дотелевизионное время.) На основе своих опытов Галилей смог определить понятие ускорения, оставшееся неизменным до наших дней. Но опыты эти привели к тому, что его, как противника Аристотеля, изгнали из Пизы, тем не менее он продолжил их в другом месте: башня для исследовании уже не была нужна, достаточно наклон-ной плоскости. Кстати, время дви-жения шара по всей плоскости, по ее половине и т.д. он измерял еще по объемиу воды, выливаю-щейся из узкой щели в сосуде. Галилей на этом, конечно, не останавливается: нужно изучить движение тела, брошенного гори- зонтально. Тут ему удается обобщить наблюдения Тартальи, вывести правило сложения скоростей и показать, что траектория такого тела является полупараболой.

Из опытов Галилея интересно описать еще один, в котором впервые за почти две тысячи лет была проверена и доказана теория плавания тел Архимеда (сомнение в ней вызывалось тем, что льдины плавают по поверхности воды, а в то время, следуя Аристотелю, принимали, что любое вещество должно при затвердевании уплотняться). Опыт был таков: шарик из воска, как легко проверить, в чистой воде тонет, но, добавляя в воду соль, можно добиться того, что шарик всплывет, а прибавив воду, можно заставить его снова опуститься. Таким образом показано, что условия плавания (сплошных) тел определяются соотношением их плотностей с плотностью жидкости.

Немного ранее, и видимо одновременно, несколько оптиков (греческое «оптикос» — зрительный) начали сооружать зрительные трубки с двумя линзами, которые в основном использовались как игрушки: люди поднимались на колокольню и рассматривали окрестности (негодование у многих вызывалось тем, что так можно было заглядывать в чужие окна), правительства пытались засекретить эти приборы, чтобы использовать для военных целей. Галилей первым догадался посмотреть в такую трубку на небо, и открытия посыпались лавиной: горы на Луне, спутники Юпитера, позже — кольца Сатурна, так что астрономия была в корне преобразована. По некоторым сведениям, он же пытался построить первый микроскоп, о других его изобретениях скажем ниже. Галилею приходилось, конечно, самому строить свои приборы.

Описать или даже перечислить все достижения Галилея в физике и астрономии невозможно. Но главное в другом: очевидно ведь, что пылинки падают медленнее камня, а Галилей показывает, что нельзя слепо доверять кажущейся очевидности. Вот в этом принципе, в том, что именно Галилей первым показал и доказал необходимость опытной проверки всех построений в физике и, одновременно, их детального математического описания, — его непреходящая заслуга, и поэтому именно его можно считать зачинателем современной опытной науки.

В 1633 г. Галилей, как известно, был осужден церковью и объявлен «узником святой инквизиции» за утверждение о том, что гелиоцентрическая модель Коперника не противоречит Священному Писанию (заметим, что до Галилея все научные сочинения писались на мало доступной латыни, а он перешел на итальянский язык). Только через 350 лет, в 1984 г., Ватикан по инициативе папы Иоанна-Павла II, пересмотрев «дело» Галилея, признал, что эта модель «не противоречит» Библии и ученый был «реабилитирован»!

Теперь нужно перейти к самому, возможно, великому ученому той эпохи — Иоганну Кеплеру (1571 — 1630). Для того чтобы понять его роль в развитии науки, нужно напомнить общепринятое тогда мне- ние, что природа и все в ней происходящее отражают божественную волю, и поэтому вопрос о причинах явлении просто неуместен и недостоин истинно верующего. Кеплер был первым, кто задал такой вопрос о движении планет, и он должен был искать тот путь, на котором можно было на него ответить: искать связь на пути религиозных символов или найти какую-то новую дорогу. (В первом издании своей книги «Тайны мироздания» он пишет о душах планет и Солнца, во втором издании заменяет слово «душа» словом «сила».)

Кеплер был ассистентом (фактически и наследником) замечатель-ного астронома-наблюдателя Тихо Браге, проводившего точнейшие измерения положения Солнца и планет (напомним, что теле- скопов еще не было). В частно-сти, Браге точно установил дни равноденствия, зимнего и лет-него солнцестояния. Вот эти ре- зультаты, вместе со своими соб-ственными, Кеплер сумел обду-мать и обработать. Как известно, 21 марта и 21 сентября продолжительности дня и ночи точно равны — это дни весеннего и осеннего равноденствий, они как бы делят год на две части. А вот если сосчитать количество дней от 21 сентября до 21 марта и потом наоборот, то окажется, что эти промежутки не равны: от осеннего равноденствия до весеннего проходит 181 день, а от осеннего до весеннего — 184 дня, на три дня больше!

Практически у всех есть в руках календари, и каждый мог бы провести эти подсчеты и задуматься над ними. Но потребовался гений Иоганна Кеплера, чтобы обратить серьезное внимание на такой пустяк и сделать из него весьма далеко идущий вывод, именуемый сейчас Первым законом Кеплера: все планеты обращаются вокруг Солнца по эллипсам, в одном из фокусов которых находится Солнце. А основывался Кеплер вот на чем. Если бы планеты вращадись, как считали и Птолемей, и Коперникг по окружностям, то каждую половину окружности они проходили бы за одинаковое время. Но поскольку, как мы видим, это не так, значит они двигаются не по окружностям, а по каким-то близким к ним траекториям. Самая же близкая к окружности плавная кривая — это эллипс, к тому же хорошо изученный.

«Следы геометрии запечатлены в мире так, словно геометрия была прообразом мира», — так говорил сам Кеплер. Но это пока только гипотеза, необходимы труднейшие, особенно для того времени, многолетние наблюдения, свои и покойного Тихо Браге, (только к концу работы Кеплер изобретает слабенькую зрительную трубу!) и расчеты — на бумаге, в столбик! А теперь насчет тех самых трех дней — это уже следствие Второго закона Кеплера, согласно которому вблизи Солнца, в перигелии, планеты движутся быстрее, чем на дальней части эллипса, в афелии. Кеплер — гениальный ученый: он понимает, что любые теории нужно проверять на разных объектах. Поэтому он предпринимает, уже со своим примитивным телескопом, невероятные по сложности и точности измерения траекторий спутников Юпитера, незадолго до того открытых Галилеем, и доказывает, что их движения подчиняются тем же законам, что и движения планет, — теория Кеплера может считаться проверенной! (О сложности и неожиданности выводов Кеплера говорит уже то, что его современник Галилей с ним не согласился и продолжал считать орбиты планет круговыми!)

И что является самым главным в творчестве Кеплера: он был первым, кто пытался найти универсальные законы, основанные на земной физике, но управляющие и небесными телами, — до него вообще не возникало идеи о единстве взаимоотношений (пока еще нет сил, понятия которых ввел Ньютон) в природе: принималось, что одни законы действуют на Земле и совсем иные — в небесах. Очень показательно, что книга Кеплера «Новая астрономия» имеет подзаголовок «Новая физика» — так утверждается их единство.

Нельзя не сказать несколько слов о Кеплере как о человеке. Его мать, абсолютно неграмот-ную женщину, обвиняют в колдовстве и привлекают к суду ин-квизиции, что почти наверня-ка означает сожжение на кост-ре. Кеплер, еще никому не известный, пешком, через половину Германии, добирается до ме-ста суда и — в то время это зву-чит как чудо — своим страст-ным и логичным выступлением добивается оправдания матери.

Оценивая заслуги Кеплера, А. Эйнштейн писал: «Какой глу-бокой была у него вера в та- кую закономерность, если, pa-ботая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения!»

Свойства магнита притягивать железные предметы было известно еще в Древней Греции, китайцы, возможно, пользовались неким подобием компаса. Но первые серьезные исследования провел только Уильям Гильберт (1544—1603), лейб-медик королевы Елизаветы I: как ни удивительно, но только он первым попробовал — как должен был бы поступить любой любознательный мальчишка — разломать магнит, распилить его на куски и посмотреть, что из этого получится: оказалось, что каждая часть также является магнитом.

Затем Гильберт придумал важнейший прибор физики: догадался подвесить намагниченную иголку на нитку и с ее помощью доказал, что у каждого магнита есть два и только два полюса. (Далее мы упомянем о его соотечественнике П. А. М. Дираке, который высказал, уже в XX в., сомнение в этом утверждении.) При этом одноименные полюса отталкиваются, а разноименные — притягиваются. Сила притяжения, как установил Гкльберт, возрастает, если к магниту приделать арматуру — чистое железо, которое само не намагничивается, не может стать постоянным магнитом, а приобретает такие свойства только в магнитном поле.

Сделав железный шар и намагнитив его, Гкльберт показал, с помощью иголок, что у этого шара такие же свойства, как у Земли, и потому назвал Землю большим магнитом. (Ранее предполагали, что магнитная стрелка компаса притягивается к какой-то точке на небе.) Помимо магнетизма Гильберт занимался и исследованием электрических явлений. Здесь со времен Фалеса Милетского (640—550 до н. э.) было известно только то, что потертый о шерсть янтарь притягивает легкие мелкие тела (соломинки, бумажки). Гильберт начал пробовать наэлектризовывать трением и другие вещества и показал, что еще многие из них обладают такими же свойствами, причем, изобретя первый электроскоп, он начал количественно сравнивать свойства этих тел, скорость уменьшения величины электризации в зависимости от освещения, от влажности и т. д. Для всех этих свойств он предложил название «электричество» от греческого слова «электрон» — янтарь. Отметим, что в последующие сто лет к его результатам и изобретениям, поистине гениальным по своей простоте, ничего нового не добавилось.

Аристотель, как мы помним, ввел принцип «природа боится пустоты» и с помощью этой боязни пустоты (horror vacui) объяснял продол-жение движения тел в отсутствии сил. Галилей попытался измерить силу этой самой боязни: он заполнял стеклянную трубку, запаянную с одного конца, водой, закрывал ее подвижным поршнем и опрокидывал, а затем привязывал к поршню грузики, чтобы измерить, при какой нагрузке вверху столба воды появится пустое пространство, т. е. будет преодолена сила боязни пустоты. (Теперь мы, конечно, понимаем, что таким образом измерялась сила сцепления столба воды.)

Проблема обострилась, когда к старому и почти слепому Галилею пришли садовники герцога Медичи: у них был вырыт глубокий, метров в 12, колодец, и ни один насос почему-то не поднимал оттуда воду к поверхности. Разобраться в проблеме Галилей попросил своего только что появившегося ученика Торричелли (1608—1647). Долгие раздумья ни к чему не приводили, пока Торричелли не осенило, что вместо 12-метрового столба воды нужно попробовать проделать опыты с ртутью, которая в 13,6 раз тяжелее, и поэтому потребуется столб высотой меньше метра (можно считать, что в этот момент возник метод моделирования!).

В первом же опыте, по поручению Торричелли его провел в 1643 г. Винченцо Вивиани (1622—1703), в запаянную с одного конца стеклянную трубку длиной около 1 метра была налита ртуть. Вивиани зажал пальцем свободное отверстие, перевернул трубку и опустил ее вертикально в сосуд с ртутью. Ртуть начала выливаться и остановилась на высоте около 76 см, тут Торричелли осенила и вторая идея: над ртутью — пустота (сейчас она называется торричеллевой пустотой), а высота столба ртути соответствует давлению атмосферы — пресловутая «боязнь пустоты» не при чем!

Фактически Торричелли совершенно по-новому использовал закон сообщающихся сосудов: уже давно было известно, что если два вертикальных сосуда с водой соединить снизу трубкой, то вода будет между ними переливаться, пока не установится в обоих коленах на одном уровне. Если же в этих коленах разные жидкости, например вода и спирт, то высота столба более легкой из них оказывается выше: можно думать, что таким образом компенсируется ее легкость.

Ну а если в одном из колен не жидкость, а воздух? Сравним высоты столбов воды и ртути: по наблюдениям садовников вода поднимается только до уровня примерно в 10 метров, по измерениям Вивиани ртуть поднимается на уровень в 76 см. Таком образом, соотношение высот где-то около 13—15, что близко к отношению удельных весов ртути и воды. Следовательно, можно заключить, что в этом опыте одним коленом являлась трубка со ртутью, а вторым — вся атмосфера. Однако эта идея, идея атмосферного давления, была столь нова и казалась настолько парадоксальной, что потребовалась изобретательность многих ученых, чтобы сделать ее естественной и будто само собой разумеющейся.

Наглядно доказать всему миру существование пустоты и роль атмосферного давления сумел дипломат и многолетний (в течение 32 лет!) бургомистр славного торгового города Магдебурга Отто фон Герике (1602—1686) после того, как он изобрел воздушный насос.

«Я изобрел и построил ряд инструментов и приборов для доказательства существования не признаваемой до сих пор пустоты», — писал Герике. И опыт, который он показал членам германского рейхстага 8 мая 1654 г., в наше время прошел бы первой строкой по всем мировым каналам телевидения. Проводился этот опыт, наиболее часто изображаемый в книгах по истории, так. Из большого медного шара, легко разделяющегося на два полушария (когда они прикладывались друг к другу, соединение уплотнялось кожаной прокладкой), выкачивался воздух. Затем в кольца на полушариях впрягалось с обеих сторон по восемь лошадей-тяжеловозов, но — как их ни погоняли — оторвать полушария друг от друга они не могли. После этого любой желающий открывал кран, воздух со страшенным грохотом врывался в шар, и тот легко разнимался руками. (Нам-то сейчас понятно, что привязывать по восемь лошадей с каждой стороны не обязательно: одну сторону можно было привязать к стене, но, во-первых, эффект был бы меньше, а, во-вторых, Третий закон Ньютона еще не был открыт.)

Помимо первого воздушного насоса и акустических опытов, Герике прославился тем, что он изобрел электростатическую машину, гигрометр, открыл явления электростатической индукции, свечения при истечении зарядов и т. д. Но нас сейчас интересует другое: когда однажды, в 1660 г., показания придуманного им водяного барометра начали резко падать, Герике сообразил, что если давление воздуха здесь сильно уменьшается, то скоро в это место хлынут со всех сторон воздушные потоки и начнется буря, о чем предупредил всех жителей. Так было положено начало научному предсказанию погоды.

Однако научные истины не так просто воспринимаются. Для того чтобы метод Герике стал общепризнанным, потребовались почти два века и катастрофа со множеством жертв: 2 августа 1837 г. начальник гавани Пуэрто-Рико предупредил моряков о невероятно резком понижении показаний барометра и предстоящей буре. Они его не послушались, и все 33 корабля, стоявшие в гавани, затонули!

Блез Паскаль (1623—1662) был самым выдающимся вундеркиндом и одним из самых многосторонних людей в истории. Первые открытия он сделал в возрасте... 5 лет: отец зашел с гостями в детскую и увидел, что мальчик строит на полу треугольники из палочек — оказалось, что он так самостоятельно переоткрыл ряд начальных теорем геометрии. Помогая отцу, инспектору по налогам, в длинных расчетах, он изобрел и построил, по-видимому в 14 лет, первый механический арифмометр, в 16 лет написал книгу по математике, где изложил целый ряд новых результатов, позже положил начало теории вероятностей. Только три года, с 1647 по 1650, Паскаль интенсивно занимается физикой, где ему принадлежит немало открытий, а с 1653 г. он практически полностью погружается в религию, пишет две книги, с которых, по мнению многих, начинается современная французская литература.

Узнав об опыте Торричелли, Паскаль решает, что воздух под действием своего веса должен сгущаться книзу, т. е. атмосферное давление должно падать с высотой. Поэтому он, человек очень болезненный и физически слабый, просит своего зятя Ф. Перье соорудить по описаниям Торричелли два барометра и с одним из них подняться на гору (второй, для сравнения, остается у подножья). 19 сентября 1648 г. Перье осуществляет этот опыт (и входит тем самым в историю): поднимаясь на гору, он действительно видит непрерывное понижение столбика ртути — гипотеза доказана, давление действительно зависит от веса столба воздуха. Паскаль публикует брошюру с описанием опытов: боязни пустоты, пресловутого horror vacui, больше не существует!

Ну а зависимость давления от высоты столба воды, формулу для которой Паскаль вывел, он продемонстрировал при большом стечении знати во главе с королем в г. Клермон-Ферран. В крепкую законопаченную дубовую бочку, до отказа наполненную водой, была вставлена тонкая высокая, до третьего этажа, стеклянная трубка; когда в эту трубку был налит с соответствующей высоты всего один стакан воды, то сорокаведерная бочка не выдержала давления и разорвалась — зрители воочию убедились, что давление зависит не от массы воды, а только от высоты ее столба.

Роберт Бойль (1627—1691), 14-й сын графа Корка, был не только выдающимся химиком, физиком и философом, но и светским человеком, дружил с королем Карлом II, который сам интересовался науками и опытами. Поэтому Бойль имел возможность содержать ассистентов и лаборантов для выполнения черновой работы в многочисленных экспериментах. (Бойль, человек религиозный, говорил, что боится умереть только потому, что «на том свете» все уже предопределено и нельзя экспериментировать!)

Особенно много однотипных измерений понадобилось, когда Бойль занялся исследованием давления в газах, до того никем не изучавшегося. Так, однажды, рассказывают, он, отправляясь на бал, поручил своему лаборанту продолжить измерять изменения объема газа в закрытом сосуде при изменении давления. С бала Бойль вернулся неожиданно рано и с негодованием обнаружил, что помощник спит в углу, а около него лежит бумажка с аккуратно выписанными длинными столбиками как будто измеренных цифр давлений и объемов. Разбуженный пинками лаборант лепетал, что мерить и не надо, что произведение объема на давление постоянно, но был, конечно, с позором изгнан.

И тут Бойль как-то задумался: а вдруг? Началась кропотливая и долгая работа, но идея, случайно высказанная малограмотным помощником, оказалась при всех проверках верной. Так возник закон Бойля— Мариотта. (Второй автор переоткрыл его несколько позже, но в английских книгах и посейчас есть закон Бойля, а во французских — закон Эдма Мариотта (1620—1684), физика и ботаника.) Бойль разрешил и старую загадку о том, что легче — вода или лед: он заполнил водой крепкий ружейный ствол, выставил его на мороз, и через два часа ствол лопнул. Всем стало ясно, что лед при замерзании расширяется.

Роберт Гук (1635—1703) начинал научную карьеру ассистентом Бойля. Затем он стал «куратором опытов» недавно образованного Королевского общества существующей и сейчас Академии наук Великобритании. Обязанностью Гука было повторять и перепроверять полученные обществом сообщения о новых открытиях, а также подготавливать и демонстрировать членам общества (на каждом заседании!) новые опыты. С одной стороны, это помогло его невероятной разносторонности как ученого, но с другой — вело к спешке, к переключению с одного начатого исследования на другое, а потому он зачастую высказывал идеи, не успевая их обдумать и исследовать, а потом вел бесконечные споры о приоритете (в частности, с Ньютоном о законе Всемирного тяготения).

Гук первым догадался, что для лучшего разглядывания веществ и предметов под микроскопом их надо разрезать на тонкие слои и смотреть на просвет. Так, подкладывая под микроскоп все что только можно, он открыл, что все растения имеют клеточное строение, и придумал само слово «клетка». Далее он микроскопически доказал, что снежинки имеют кристаллическую структуру и т. д. Еще одна идея, которая сейчас выглядит очень простой, но до Гука никому не приходила в голову, заключается в том, что твердые тела должны под нагрузкой деформироваться (всеми принималось, без проверки, что твердые тела, в отличие от газов и жидкостей, имеют всегда неизменную форму; напомним, что резина была изобретена много позже). Для проверки этого положения Гук исследовал возможность растяжения твердых тел под действием нагрузки — просто-напросто подвешивал узкие полоски различных металлов, прикреплял к нижней части полосок чашечку, в которую клались гирьки, и измерял (иногда с помощью микроскопа) величину удлинения.

Так он выяснил, что удлинение всегда прямо пропорционально величине приложенной силы — это и есть знаменитый закон Гука. (Гук в то время не мог приложить такую нагрузку, при которой этот закон начинает нарушаться, поэтому сейчас диаграмму удлинения тел под нагрузкой делят на гуковскую и негуковскую части.) Эти исследования Гука только в 1807 г. уточнил его соотечественник Томас Юнг (подробнее о нем — ниже): он выяснил, как коэффициент Гука зависит от длины и поперечного сечения растягиваемого тела. Далее Гук аналогичными опытами доказал, что все вещества при нагревании расширяются. (Позже было выяснено, что это утверждение не совсем верно: вода при нагревании от нуля до 4° С сжимается, отклоняется от этого закона поведение полуметалла висмута и некоторых других, но такие исключения очень редки, а объяснения им были найдены только в XX в.) Таким образом, Гук явился фактически основоположником физики твердого тела.

Вернемся несколько назад по времени и рассмотрим примечательный оптический эксперимент, который осуществил Франческо Мария Гримальди (1618—1663), монах-иезуит и физик. Эксперимент был очень прост и многократно до того проделывался: в темную комнату через маленькое отверстие пропускался луч света, превращавшийся в комнате в конус, так что на экране получался яркий кружок или эллипс. Это все было хорошо известно. Но вот Гримальди ввел в этот конус, на довольно большом рассто- янии от отверстия, палку, тень ко- й должна была пересечь яркий кружок на экране. И неожиданно оказалось, что, во-первых, тень шире, чем следовало, исходя из идеи прямолинейного распространения света, во-вторых, по обе стороны центральной тени можно было заметить, в зависимости от яркости солнечного света, одну, две или три темные полосы, и, в-третьих, края этих полос были голубоватыми со стороны центра и красноватыми с противоположного края.

Когда же Гримальди проделал два близких отверстия в ставнях, то смог заметить много новых особенностей при перекрытии светлых кружков на экране: вокруг каждого из них возникали темные кольца, места пересечения которых были светлее обоих колец. В дальнейших опытах он менял формы и размеры отверстий, их сочетания. Таким образом, Гримальди открыл, что помимо отражения (рефлексии) и преломления (рефракции) существует и явление, которое он назвал дифракцией и которое состоит в частичном огибании светом препятствий.

Христиан Гюйгенс (1629—1685), гениальный физик и математик, во-шел в историю прежде всего как величайший часовых дел мастер всех времен, который изобрел маятниковые часы, а затем придумал и часы с пружинным балансиром. Водяные и песочные часы существовали уже два тысячелетия, но каждый их экземпляр отличался своими особенностями, своей «скоростью хода». Солнечные часы, т.е. вертикальный столбик, тень которого передвигается с движением солнца и показывает время на начерченном циферблате, должны иметь много шкал, для каждого месяца года по крайней мере, и такие часы, конечно, не работают в плохую погоду и ночью.

Уже в XIII—XIV вв. стали сооружать колесные, или механические часы, в основном башенные. Их приводили в движение тяжелые ги-ри спускающиеся затем вниз грузы вращали системы колес и стрелки. Но гири при спуске постепенно ускорялись, и время «начинало течь быстрее».

Когда Галилей открыл изохронность маятника, то ему стало ясно, что маятник можно использовать для отмеривания промежутков времени. Можно было, например, написать, что за время спуска груза с такой-то наклонной плоскости маятник длиною в 1,5 м совершил пять колебаний, и тогда любой другой человек мог повторить этот опыт и проверить количественную правильность результата. Но не сидеть же и считать все время число колебаний: становилось ясно, что нужно изобрести и каким-то образом приделать к маятнику счетчик этих колебаний.

Изобретатели бились над этой проблемой около семидесяти лет — и никакого результата. А Гюйгенс решил задачу гениально просто (один из признаков гениального открытия, изобретения — когда оно совершено, то всем кажется, что любой мог бы до этого сам додуматься). Для чего, решил он, изобретать какой-то счетчик, есть ведь уже механические часы, они же и счетчик: нужно попросту приделать такой храповик, «собачку», чтобы при каждом колебании маятника, грузика на длинном стержне, эта собачка разрешала ведущему колесику поворачиваться на один зубец. (И сейчас встречаются такие самые простенькие часы с гирькой, чаще уже в наборах детских конструкторов, которые в точности повторяют часы Гюйгенса.)

Так была решена самая сложная на тот момент проблема измерительной техники. Затем Гюйгенс изобрел часы с пружинным балансиром, карманные или наручные (здесь его приоритет пытался оспаривать Гук, и не только он один). Эти часы смогли решить важнейшую задачу определения положения суд- на в море: британское адмиралтейство объявило открытый конкурс по поиску наилучшего способа определения долготы судна с громадной по тому времени премией. (Широту можно было определить по углу на солнце в полдень при наличии заранее рассчитанных таблиц.)

Изобретение пружинных часов эту проблему полностью решило. Если на судне есть точные часы, хронометр, показывающий время по гринвичскому меридиану, то определив их показание в полдень данного места, т. е. в момент, когда тени наиболее короткие, можно определить свою долготу: разница в один час означает отличие от гринвичского меридиана на 15° и т.д. (Солнце описывает полный круг в 360° за 24 часа, отсюда и получается эта цифра.) Заметим, что ранее одни и те же острова по многу раз переоткрывались, а их по-ложения на картах отличались на тысячи миль.

Не подумайте только, что заслуги Гюйгенса ограничиваются часами, хотя и этого хватило бы для бессмертия в истории: он развил волновую теорию света и предложил принцип, который назван его именем и до сих пор является фундаментом всех волновых теорий, в том числе оптики и акустики. А вот любопытная и поучительная история, описанная им в одном письме в 1693 г. В замке Шантильи под Парижем Гюйгенс заметил, что если встать между лестницей и работающим фонтаном, то слышен звук, напоминающий музыкальный тон: он предположил, что это происходит вследствие отражений от равноотстоящих ступенек. Измерив ширину ступенек, Гюйгенс делает бумажную трубку такой же длины и находит, что она издает тот же тон, — фактически лестница выделяет из шума фонтана одну резонансную частоту, а Гюйгенс нашел пример разложения шума в акустический спектр.

Основоположник современного учения о теоретической механике Христиан Гюйгенс появился на свет 14 апреля 1629 года в Гааге. Основы математики и механики Гюйгенс получил на лекциях профессора Франса ван Схотена в Лейденском университете. Первая научная работа молодого учёного вышла из печати в 1651 году и называлась «Рассуждения о квадратуре гиперболы, эллипса и круга». Большое практическое значение имели работы Гюйгенса в сфере точных наук – описание основ теории вероятностей, математической теории чисел и различных кривых, волновой теории света. Первым в Голландии он получил патент на маятниковые часы. Это показывает широту научного мировоззрения Христиана Гюйгенса.

Если твой наставник – Декарт, тебе суждено стать гением

Широта интересов Гюйгенса поражает. За время научной деятельности он написал десятки серьезных научных трудов в механике и математике и физике. Признавая заслуги великого голландца в познании окружающего мира и постановке существовавших в то время взглядов на научную основу, королевское научное сообщество оказало Христиану Гюйгенсу честь, избрав его в 1663 году своим членом — первым из иностранных учёных. В 1666 году основали свою академию наук французы. Первым президентом французского научного сообщества стал Гюйгенс.

Одной из многочисленных отраслей науки, обогащенных трудами голландского естествоиспытателя, стала астрономия. Огромное влияние на взгляды юного Христиана оказала дружба его отца, Константина Гюйгенса, с основателем философской теории картезианства Рене Декартом. Гюйгенс увлёкся астрономическими исследованиями. С помощью брата он переделал домашний телескоп таким образом, чтобы достичь максимально возможного увеличения – 92х.

Марс, Сатурн, и дальше, дальше…

Первое же астрономическое открытие Гюйгенса стало научной сенсацией. В 1655 году, наблюдая в телескоп окрестности Сатурна, астроном заметил те же странности, на которые указывал в своих трудах Галилео Галилей. Но итальянец не смог дать чёткое обоснование этого явления. Гюйгенс же правильно определил, что это скопления льда различных размеров, окружающие планету и не покидающие орбиту Сатурна под действием её гигантского притяжения. Рассмотрел Гюйгенс в свой телескоп и спутник Сатурна, названный впоследствии Титаном. Спустя четыре года учёный систематизировал свои открытия колец на орбите Сатурна в научном труде.

1656-й год. Сфера астрономических интересов Гюйгенса впервые выходит далеко за пределы Солнечной системы. Объектом наблюдений становится открытая за 45 лет до этого французом Николя де Перейском туманность в созвездии Ориона. Сегодня туманность Ориона классифицирована в астрономических каталогах под наименованием Мессье 42 (NGC1976). Гюйгенс сделал первичную классификацию объектов туманности и вычисление астрономических координат, начал расчёты размеров туманности и расстояния до Земли.

Спустя пятнадцать лет голландец возвратился к астрономическим наблюдениям. Объектом его внимания стала Красная планета. Наблюдая в телескоп Южный полюс Марса, Гюйгенс установил, что он покрыт ледяной шапкой. Уже тогда астрономы были уверены, что на Марсе могут быть определённые условия для существования живых организмов. Астроном довольно точно вычислил период обращения планеты вокруг собственной оси.

Мирозрение Гюйгенса

Последним научным трудом в области астрономии стала статья, опубликованная уже после его смерти, в 1698 году в Гааге. Трактат является компиляцией философии и астрономии в попытке понимания основных физических законов существования и устройства Вселенной. Гюйгенс одним из первых европейских учёных выдвинул гипотезу населённости разумными существами других объектов вне Земли. Посмертный научный труд Гюйгенса был переведён на английский, французский, немецкий и шведский языки. Научное завещание Христиана Гюйгенса по личному указу императора Петра I в 1717 году перевёл на русский язык Яков (Джеймс) Брюс. Русскому научному сообществу труд известен как «Книга мирозрения» .

Подытоживая многолетние наблюдения за различными объектами Вселенной, Гюйгенс сделал попытку подвести научную основу под существование гелиоцентрической системы Коперника, а также научиться вычислять истинные расстояния до звезд и туманностей на основании их видимой яркости.

Как и у других крупнейших учёных средневековья, у Гюйгенса были талантливые ученики. Наиболее известен из них немецкий математик Готфрид Лейбниц.

Христиан Гюйгенс скончался в Гааге 8 июля 1695 года в возрасте 66 лет. Современники высоко оценили научные достижения знаменитого голландца в области астрономии. В 1997 году к открытому им спутнику Сатурна Титану стартовал зонд Европейского космического агентства, названный его именем. Миссия космического аппарата была столь же удачной, сколь долгой и богатой научными открытиями была жизнь Христиана Гюйгенса.

ХРИСТИАН ГЮЙГЕНС

Христиан Гюйгенс фон Цюйлихен - сын голландского дворянина Константина Гюйгенса, родился 14 апреля 1629 года. «Таланты, дворянство и богатство были, по-видимому, наследственными в семействе Христиана Гюйгенса», - писал один из его биографов. Его дед был литератор и сановник, отец - тайный советник принцев Оранских, математик, поэт. Верная служба своим государям не закрепощала их талантов, и, казалось, Христиану предопределена та же, для многих завидная судьба. Он учился арифметике и латыни, музыке и стихосложению. Генрих Бруно, его учитель, не мог нарадоваться своим четырнадцатилетним воспитанником: «Я признаюсь, что Христиана надо назвать чудом среди мальчиков… Он развёртывает свои способности в области механики и конструкций, делает машины удивительные, но вряд ли нужные».

Учитель ошибался: мальчик всё время ищет пользу от своих занятий. Его конкретный, практический ум скоро найдёт схемы как раз очень нужных людям машин.

Впрочем, он не сразу посвятил себя механике и математике. Отец решил сделать сына юристом и, когда Христиан достиг шестнадцатилетнего возраста, направил его изучать право в Лондонский университет. Занимаясь в университете юридическими науками, Гюйгенс в то же время увлекается математикой, механикой, астрономией, практической оптикой. Искусный мастер, он самостоятельно шлифует оптические стёкла и совершенствует трубу, с помощью которой позднее совершит свои астрономические открытия.

Христиан Гюйгенс был непосредственным преемником Галилея в науке. По словам Лагранжа, Гюйгенсу «было суждено усовершенствовать и развить важнейшие открытия Галилея». Существует рассказ о том, как в первый раз Гюйгенс соприкоснулся с идеями Галилея. Семнадцатилетний Гюйгенс собирался доказать, что брошенные горизонтально тела движутся по параболам, но, обнаружив доказательство в книге Галилея, не захотел «писать „Илиаду“ после Гомера».

Окончив университет, он становится украшением свиты графа Нассауского, который с дипломатическим поручением держит путь в Данию. Графа не интересует, что этот красивый юноша - автор любопытных математических работ, и он, разумеется, не знает, как мечтает Христиан попасть из Копенгагена в Стокгольм, чтобы увидеть Декарта. Так они не встретятся никогда: через несколько месяцев Декарт умрёт.

В 22 года Гюйгенс публикует «Рассуждения о квадрате гиперболы, эллипса и круга». В 1655 году он строит телескоп и открывает один из спутников Сатурна - Титан и публикует «Новые открытия в величине круга». В 26 лет Христиан пишет записки по диоптрике. В 28 лет выходит его трактат «О расчётах при игре в кости», где за легкомысленным с виду названием скрыто одно из первых в истории исследований в области теории вероятностей.

Одним из важнейших открытий Гюйгенса было изобретение часов с маятником. Он запатентовал своё изобретение 16 июля 1657 года и описал его в небольшом сочинении, опубликованном в 1658 году. Он писал о своих часах французскому королю Людовику XIV: «Мои автоматы, поставленные в ваших апартаментах, не только поражают вас всякий день правильным указанием времени, но они годны, как я надеялся с самого начала, для определения на море долготы места». Задачей создания и совершенствования часов, прежде всего маятниковых, Христиан Гюйгенс занимался почти сорок лет: с 1656 по 1693 год. А. Зоммерфельд назвал Гюйгенса «гениальнейшим часовым мастером всех времён».

В тридцать лет Гюйгенс раскрывает секрет кольца Сатурна. Кольца Сатурна были впервые замечены Галилеем в виде двух боковых придатков, «поддерживающих» Сатурн. Тогда кольца были видны, как тонкая линия, он их не заметил и больше о них не упоминал. Но труба Галилея не обладала необходимой разрешающей способностью и достаточным увеличением. Наблюдая небо в 92-кратный телескоп, Христиан обнаруживает, что за боковые звёзды принималось кольцо Сатурна. Гюйгенс разгадал загадку Сатурна и впервые описал его знаменитые кольца.

В то время Гюйгенс был очень красивым молодым человеком с большими голубыми глазами и аккуратно подстриженными усиками. Рыжеватые, круто завитые по тогдашней моде локоны парика опускались до плеч, ложась на белоснежные брабантские кружева дорогого воротника. Он был приветлив и спокоен. Никто не видел его особенно взволнованным или растерянным, торопящимся куда-то, или, наоборот, погружённым в медлительную задумчивость. Он не любил бывать в «свете» и редко там появлялся, хотя его происхождение открывало ему двери всех дворцов Европы. Впрочем, когда он появляется там, то вовсе не выглядел неловким или смущённым, как часто случалось с другими учёными.

Но напрасно очаровательная Нинон де Ланкло ищет его общества, он неизменно приветлив, не более, этот убеждённый холостяк. Он может выпить с друзьями, но чуть-чуть. Чуть-чуть попроказить, чуть-чуть посмеяться. Всего понемногу, очень понемногу, чтобы осталось как можно больше времени на главное - работу. Работа - неизменная всепоглощающая страсть - сжигала его постоянно.

Гюйгенс отличался необыкновенной самоотдачей. Он сознавал свои способности и стремился использовать их в полной мере. «Единственное развлечение, которое Гюйгенс позволял себе в столь отвлечённых трудах, - писал о нём один из современников, - состояло в том, что он в промежутках занимался физикой. То, что для обыкновенного человека было утомительным занятием, для Гюйгенса было развлечением».

В 1663 году Гюйгенс был избран членом Лондонского королевского общества. В 1665 году, по приглашению Кольбера, он поселился в Париже и в следующем году стал членом только что организованной Парижской академии наук.

В 1673 году выходит в свет его сочинение «Маятниковые часы», где даны теоретические основы изобретения Гюйгенса. В этом сочинении Гюйгенс устанавливает, что свойством изохронности обладает циклоида, и разбирает математические свойства циклоиды.

Исследуя криволинейное движение тяжёлой точки, Гюйгенс, продолжая развивать идеи, высказанные ещё Галилеем, показывает, что тело при падении с некоторой высоты по различным путям приобретает конечную скорость, не зависящую от формы пути, а зависящую лишь от высоты падения, и может подняться на высоту, равную (в отсутствие сопротивления) начальной высоте. Это положение, выражающее по сути дела закон сохранения энергии для движения в поле тяжести, Гюйгенс использует для теории физического маятника. Он находит выражение для приведённой длины маятника, устанавливает понятие центра качания и его свойства. Формулу математического маятника для циклоидального движения и малых колебаний кругового маятника он выражает следующим образом: «Время одного малого колебания кругового маятника относится к времени падения по двойной длине маятника, как окружность круга относится к диаметру».

Существенно, что в конце своего сочинения учёный даёт ряд предложений (без вывода) о центростремительной силе и устанавливает, что центростремительное ускорение пропорционально квадрату скорости и обратно пропорционально радиусу окружности. Этот результат подготовил ньютоновскую теорию движения тел под действием центральных сил.

Из механических исследований Гюйгенса, кроме теории маятника и центростремительной силы, известна его теория удара упругих шаров, представленная им на конкурсную задачу, объявленную Лондонским королевским обществом в 1668 году. Теория удара Гюйгенса опирается на закон сохранения живых сил, количество движения и принцип относительности Галилея. Она была опубликована лишь после его смерти в 1703 году.

Гюйгенс довольно много путешествовал, но никогда не был праздным туристом. Во время первой поездки во Францию он занимался оптикой, а в Лондоне - объяснял секреты изготовления своих телескопов. Пятнадцать лет он проработал при дворе Людовика XIV, пятнадцать лет блестящих математических и физических исследований. И за пятнадцать лет - лишь две короткие поездки на родину, чтобы подлечиться.

Гюйгенс жил в Париже до 1681 года, когда после отмены Нантского эдикта он, как протестант, вернулся на родину. Будучи в Париже, он хорошо знал Рёмера и активно помогал ему в наблюдениях, приведших к определению скорости света. Гюйгенс первый сообщил о результатах Рёмера в своём трактате.

Дома, в Голландии, опять не зная усталости, Гюйгенс строит механический планетарий, гигантские семидесятиметровые телескопы, описывает миры других планет.

Появляется сочинение Гюйгенса на латинском языке о свете, исправленное автором и переизданное на французском языке в 1690 году. «Трактат о свете» Гюйгенса вошёл в историю науки как первое научное сочинение по волновой оптике. В этом «Трактате» сформулирован принцип распространения волны, известный ныне под названием принципа Гюйгенса. На основе этого принципа выведены законы отражения и преломления света, развита теория двойного лучепреломления в исландском шпате. Поскольку скорость распространения света в кристалле в различных направлениях различна, то форма волновой поверхности будет не сферической, а эллипсоидальной.

Теория распространения и преломления света в одноосных кристаллах - замечательное достижение оптики Гюйгенса. Гюйгенс описал также исчезновение одного из двух лучей при прохождении их через второй кристалл при определённой ориентировке его относительно первого. Таким образом, Гюйгенс был первым физиком, установившим факт поляризации света.

Идеи Гюйгенса очень высоко ценил его продолжатель Френель. Он ставил их выше всех открытий в оптике Ньютона, утверждая, что открытие Гюйгенса, «быть может, труднее сделать, нежели все открытия Ньютона в области явлений света».

Цвета Гюйгенс в своём трактате не рассматривает, равно как и дифракцию света. Его трактат посвящён только обоснованию отражения и преломления (включая и двойное преломление) с волновой точки зрения. Вероятно, это обстоятельство было причиной того, что теория Гюйгенса, несмотря на поддержку её в XVIII веке Ломоносовым и Эйлером, не получила признания до тех пор, пока Френель в начале XIX века не воскресил волновую теорию на новой основе.

Умер Гюйгенс 8 июля 1695 года, когда в типографии печаталась «Космотеорос» - последняя его книга.

Из книги Энциклопедический словарь (Г-Д) автора Брокгауз Ф. А.

Гюйгенс Гюйгенс (Христиан Huyghensvan Zuylichem), – математик, астроном, и физик, которого Ньютон признал великим (1629 – 1695). Отец его, синьор ван Зюйлихем, секретарь принцев Оранских был замечательным литератором и научно образован. Научную деятельность Г. начал в 1651-м г. сочинением

Из книги Большая Советская Энциклопедия (ВО) автора БСЭ

Вольф Христиан Вольф (Wolff) Христиан (Кристиан) (24.1.1679, Бреславль, - 9.4.1754, Галле), немецкий философ, представитель рационализма. Профессор математики и философии в Галле (1706-23 и с 1740) и Марбурге (1723-40), где в числе его слушателей был М. В. Ломоносов. В. выступил главным образом

Из книги Большая Советская Энциклопедия (ГЮ) автора БСЭ

Из книги Большая Советская Энциклопедия (ГО) автора БСЭ

Из книги Большая Советская Энциклопедия (ПА) автора БСЭ

Из книги Большая Советская Энциклопедия (СМ) автора БСЭ

Смэтс Ян Христиан Смэтс (Smuts) Ян Христиан (24.5.1870, Бовенплатс, Капская провинция, - 11.9.1950, Ирене, близ г. Претория), южноафриканский политический деятель; брит. фельдмаршал (с 1941), философ-идеалист. Родился в семье африканера - крупного землевладельца. Окончил Кембриджский

Из книги Большая Советская Энциклопедия (ХР) автора БСЭ

Из книги Большая Советская Энциклопедия (ЭЙ) автора БСЭ

Из книги 100 великих учёных автора Самин Дмитрий

ХРИСТИАН ГЮЙГЕНС (1629–1695)Христиан Гюйгенс фон Цюйлихен - сын голландского дворянина Константина Гюйгенса, родился 14 апреля 1629 года. «Таланты, дворянство и богатство были, по-видимому, наследственными в семействе Христиана Гюйгенса», - писал один из его биографов. Его

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги 3333 каверзных вопроса и ответа автора Кондрашов Анатолий Павлович

Почему Христиан Гюйгенс был уверен, что на Юпитере имеются огромные плантации конопли? Нидерландский механик, физик и математик Христиан Гюйгенс, имеющий также большие заслуги в области астрономии, был сыном своего времени, а потому искренне верил в целесообразность

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Большой словарь цитат и крылатых выражений автора

ХРИСТИАН VIII (Christian VIII, 1786–1848), король Дании с 1839 г. 120 Открытое письмо. Под таким заголовком было опубликовано заявление Христиана VIII от 8 июня 1846 г., в котором отклонялись притязания Пруссии на Шлезвиг и Гольштейн. ? Gefl. Worte, S. 444.В Германии это выражение эпизодически

Из книги Всемирная история в изречениях и цитатах автора Душенко Константин Васильевич

ХРИСТИАН Х (Christian Х, 1870–1947), король Дании с 1912 г. 121 Если немцы введут в Дании желтую звезду для евреев, я и моя семья будем носить ее как знак наивысшего отличия. Слова Христиана 11 окт. 1943 г. На другой день он действительно появился перед народом верхом на лошади с желтой

Из книги автора

ХРИСТИАН VIII (Christian VIII, 1786–1848),король Дании с 1839 г.26Открытое письмо.Под таким заголовком было опубликовано заявление Христиана VIII от 8 июня 1846 г., в котором отклонялись притязания Пруссии на Шлезвиг и Гольштейн. ? Gefl. Worte-01, S. 444.В Германии это выражение эпизодически

Из книги автора

ХРИСТИАН Х (Christian Х, 1870–1947),король Дании с 1912 г.27Если немцы введут в Дании желтую звезду для евреев, я и моя семья будем носить ее как знак наивысшего отличия.Слова Христиана 11 окт. 1943 г.? Eigen, p. 65На другой день Христиан действительно появился перед народом верхом на лошади с